代写DBA3803 Predictive Analytics in Business帮做R语言

2024-10-29 代写DBA3803 Predictive Analytics in Business帮做R语言

DBA3803: Predictive Analytics in Business

Overview

Analytics is best learned by applying the methods and techniques to real-world data and problems. For this project:

1.   Identify  a  real-world  problem or an area where predictive analytics can be applied.

2.   Obtain real-world data and conduct exploratory data analysis.

3.   Apply a  predictive analytics  method or a combination of methods to solve your problem / answer your question(s).

4.   Analyze  the  results  and  present  your  findings  and  conclusions  through  a comprehensive report.

Deadline for submission: Friday, Nov 15, 2024, at 2359

Data Sources

Each team is expected to identify an appropriate data source and gather the data. The project scope will largely be driven by the data you find and use. Some possible datasets and associated real-world applications/problems are linked below, but we encourage you to be creative and look into other data sources as well.

•   Toronto  Open  Data Catalogue: Contains various datasets on everything from ambulance locations to traffic cameras.https://open.toronto.ca/

•   HetRec:Hosted by the University of Minnesota, contains several open datasets for recommender  engines,  such  as   Delicious,   Last.FM,  Movielens,  and   IMDB.

https://grouplens.org/datasets/movielens/

•   SQuAD:  Stanford  Question  Answering  Dataset,  contains  parsed  Wikipedia articles and crowdsourced questions for trivia bots and personal assistants.

https://rajpurkar.github.io/SQuAD-explorer/

•   Million Song Dataset:hosted by Columbia University, contains several open datasets for music information analytics.http://millionsongdataset.com/

•   Singapore Open Data Portal: data sets collected by Singapore public agencies have been made available and accessible to the public.https://data.gov.sg

•   Search for datasets on GitHub, Kaggle, Reddit /r/opendata, and elsewhere!

•    If you have an interesting project idea and are missing some crucial data, you could collect your own (for example with surveys, scraping websites, or manual collection).

Final Report

Your final report is a crucial component of this module. It is an opportunity for you to  showcase your understanding, analysis, and interpretation of the ideas and methods   discussed in the class. The report should be a comprehensive document that follows a structured format, providing a clear and concise presentation of your work. It should include the following sections: Abstract, Introduction, Data, Methods, Results, Discussion, Conclusion, and References. You can also include an appendix for additional technical details, supplementaty data analysis, references, code, etc.

1. Abstract (0.5 page maximum)

The  abstract  provides  a  brief  summary  of  the  entire  project,  including  the problem  statement,  data,  methods,  results,  and  conclusions.  The   abstract should be concise but informative, allowing readers to understand the essence of your work.

2. Introduction (1 page maximum)

The  introduction  should  focus  on  defining  the  context  of  your  analysis,  the problem statement, the objectives of the study, and the data and method used. Clearly  define the scope of the  project  and  provide  a  rationale  for why  it  is important or relevant. End the introduction with a clear thesis statement that outlines what the reader can expect from the rest of the report. The introduction should include the following sections:

•    Background and context :  Brief background description of the domain of your problem.

•    Problem statement: A clear problem statement identifying the question(s) you will answer.

•   Data:  A  description  of  the  sources  and  datasets  that  you  plan  to  use, including key variables.

•   Methods:  An  outline  of  the  predictive  analytics  methods  and  models implemented in the study.

3. Data (2 pages maximum)

Detail the data sources used in your analysis. Include information on the type of data,  its  origin,  and  any  preprocessing  steps  you  performed.  Discuss  any challenges or considerations related to the data, such as missing values or data quality issues.

4. Methods (3 pages maximum)

Explain the analytical methods and techniques you employed in your project. This should include a description of any statistical or machine learning models, algorithms, or tools used. Provide enough detail for the reader to understand your approach but avoid unnecessary technical jargon.

5. Results (3 pages maximum)

Present  your  findings   in  a  clear  and   organized   manner.  Use  visualizations methods such as charts, graphs, or tables to enhance the interpretation of your results.  Highlight  key  trends,   patterns,  or  insights  that   emerge  from  your analysis.

6. Discussion (0.5 page maximum)

Interpret the  results  in the context of your  research questions or objectives. Discuss any unexpected findings and compare your results to existing literature or industry benchmarks. Address the limitations of your analysis and propose potential explanations or areas for further investigation.

7. Conclusion (0.5 page maximum)

Summarize the key takeaways from your analysis, and clearly state the answer to  your  questions.  Finally,  discuss  the  implications  of  your  findings  for  the broader field or problem area.

8. Appendix (No page limit)

For your additional technical details, supplementaty data analysis, references, code, etc. Please make sure that it is well referenced from the main text.

Additional tips

•    Use  clear  and  concise  language,  avoid  lengthy  or  needless  descriptions  and paragraphs.

•    Ensure a logical flow between sections to facilitate the understanding.

•    Include  relevant  codes,  algorithms,  or  technnical  details  in  an  appendix  if necessary.