代做EEC 210 Analysis and design of analog integrated circuits HW 7代写C/C++语言

2024-12-18 代做EEC 210 Analysis and design of analog integrated circuits HW 7代写C/C++语言

EEC 210

HW 7

1.       a.       Use the Miller approximation to calculate the −3-dB frequency of the small-

signal voltage gain of a common-source transistor whose ac schematic is shown below.  Assume the dc drain current ID = 0. 5 mA.  Also, assume that W = 100 µm, L drawn = 2 µm, Ld = 0. 2 µm, Xd = 0, λ = 0, k= 60 µA/V2 , χ = 0, Cdb = 0, Cgb = 0, and fT = 3 GHz (at ID = 0. 5 mA).

b.       Calculate the nondominant pole magnitude  for the circuit in (a).  Compare your answer with a SPICE simulation.

2.       For the circuit below, assume that VI is adjusted so that ID = 0. 5 mA.  Calculate the low-frequency small-signal voltage gain vo /vi , and use the zero-value time-con- stant method to estimate the −3-dB frequency.  Use the same data as in the previous problem except:

a. Cdb ≠ 0.        Calculate      the      zero-bias      drain-bulk       capacitance      as Cdb0 = AD (Cj0′) + PD (Cjsw0′), where AD = (5 µm)W is the drain area and PD = W is    the    drain    perimeter.     Let Cj0′ = 0. 4 fF/(µm2 )    and Cjsw0′ = 0. 4 fF/µm. Use Equation (1.202) with ψ0 = 0. 6 V to calculate Cdb . In case you do not have the book, Equation (1.202) shows that

b. Cox = 0. 7 fF/(µm2 ), and fT is no longer given.

3.       Consider the amplifier stage shown below.  Assume IB is adjusted so that the dc

output voltage VO = 0.

a.       Calculate the low-frequency, small-signal transconductance vo /ii , and use the zero-value time-constant method to estimate the −3-dB frequency.  Use the formula   for Cdb0      given   in   Problem   2.     For   all   transistors,   assume L drawn = 2 µm, Ld = 0. 2 µm, Xd = 1 µm, χ = 0, W1 = 100 µm,    and W2 = W3 = 100 µm. Use Equations (1.201) and (1.202) with ψ0 = 0. 6 V for the junction  capacitances.   In  case  you  do  not  have  the  book,  Equation

(1.201) shows that and Equation (1.202) is given in the

previous    problem.      For M1 ,     assume Vtp = − 1 V, kp = 20 µA/V2 ,

λp = 1/50 V, Cox= 0. 7 fF/(µm2 ), Cj0= 0. 2 fF/(µm2 ),           and Cjsw0= 0. 2 fF/µm.   For M2    and M3 ,  assume Vtn = 1 V, kn = 60 µA/V2 ,

λn = 1/100 V, Cox= 0. 7 fF/(µm2 ), Cj0 = 0. 4 fF/(µm2 ),          and Cjsw0= 0. 4 fF/µm.

b.       Repeat  (a) with a 20-pF capacitor connected from the drain to the gate of M1 .

4.       An amplifier stage is shown below.  Calculate the zero-bias drain-bulk and source-

bulk            capacitances            as Cdb0 = AD (Cj0) + PD (Cjsw0)            and

Csb0 = AS (Cj0′) + PS (Cjsw0′),  where AD = AS = (5 µm)W is  the  drain  and  the source  area  and PD = PS = W is  the  drain  and  the  source  perimeter.   Assume W = 100 µm,Ldrawn = 2 µm, Ld = 0. 2 µm, Xd = 0, λ = 0, k= 60 µA/V2 , χ = 0, Vt = 1 V, Cox= 0. 7 fF/(µm2 ), Cj0= 0. 4 fF/(µm2 ), and Cjsw0= 0. 4 fF/µm.  Use Equations (1.201) and (1.202) with ψ0 = 0. 6 V for all important junctions.  (These equations are given in the previous problems.)

a.       Calculate the low-frequency, small-signal voltage gain vo /vi .

b.       Apply the zero-value time-constant method to the differential-mode half cir- cuit to calculate the −3-dB frequency of the gain.