代做MATH1014 Calculus II Problem Set 3 L01 (Spring 2025)调试SPSS

2025-03-13 代做MATH1014 Calculus II Problem Set 3 L01 (Spring 2025)调试SPSS

MATH1014

Calculus II

L01 (Spring 2025)

Problem Set 3




1.     (a)     Let  m   and  n   be non-negative integers.     Evaluate the following integrals, distinguishing all possible cases for  m  and  n.

(b)    Let  n   be apositive integer and let  f: ℝ → ℝ   be afunction defined by

f(x) = a1 sin x + a2 sin 2x + ⋯ + an sinnx ,

where  a1, a2, … , an    are real numbers.     Show that we must have

2.     Evaluate the following antiderivatives.

Hint:         In (d),first consider  ex 2 dx.

3.     Evaluate the limit

 

Hint:         Take natural logarithm.

4.     Let  a  > 0   and let  f: [−a, a] → ℝ  bean odd continuous function.     Show that

5.     The  following  are “ proofs” of some obviously false statements.    Point  out  what  is  wrong in each of these “ proofs”.

(a)    A “ proof” of the statement that “π  = 0”.



(b)   A “ proof” of the statement that “every integral equals zero” :

(c)    A “ proof” of the statement that “0  =  1”.

6.     Let  f   be afunction which is continuously differentiable on   [0, 1].

(a)    For every   a, b ∈ [0, 1], show that

 

(b)    Let  n  ≥ k  ≥ 1  be  integers.    Using  the  result from  (a)  and the  generalized Mean Value

Theorem for integrals (Example 5.49 (a)), show that there exists  such that 

(c)    Now for each  n  ∈ , we let  Show that 

Hence using the result from (b),deduce that

 



 7.     Let  f: [0, +∞) → ℝ   be the function defined by  f(x) = xex. (a)    Show that  f   is strictly increasing.

(b)    Now  f  is one-to-one according to (a), so we let  g   be the inverse of  f, i.e.  g  = f −1 .

(i)     Write down the domain of  g.     Show that

 

for every  x   in the interior of the domain of  g.

(ii)    Using  the  result  from  (b)  (i)  or  otherwise,  evaluate  the  antiderivative  ∫ g(x)dx,

expressing your answer in terms of  g   and other elementary functions only. 

(iii)   Hence,or otherwise, evaluate the integral 

8.     (a)     Let  n   beanon-negative integer, and let  f: ℝ → ℝ   be the polynomial f(x) = (x2   1)n.

(i)     Show that  (x2  − 1)f (x) − 2nxf(x) = 0  for every  x   ℝ .

(ii)    Hence, show that

(x2   1)f(n+2)(x) + 2xf(n+1)(x) − n(n + 1)f(n)(x) = 0 

for every  x  ∈ ℝ .

Hint:         Recall “ Leibniz rule” in chapter 3.     Part (a) is almost the same as Example 3.69. (b)    For each non-negative integer  n, let  pn : ℝ → ℝ   be the function

 

(i)     Using the result from (a) (ii), show that

 

for every non-negative integer  n.

(ii)    Hence deduce that if  m   and  n   are distinct non-negative integers, then

 

9.     For each non-negative integer  n, let

 

(a)    For each positive integer  n, show that

 

Hence show that

 

(b)    Using the result from (a), find the value of  In   in terms of  n.