代做CSCI203 – Data Structures and Algorithm, 2024 S3代写留学生C/C++语言

2024-08-19 代做CSCI203 – Data Structures and Algorithm, 2024 S3代写留学生C/C++语言

CSCI203 – Data Structures and Algorithm, 2024 S3

Assignment 2 (15% of total marks)

Due date: 12 August 2024, Monday Scope:

The tasks of this assignment cover the data structure and algorithm. The assignment covers the topics discussed in topics 4, and 5.

The assignment is divided into two parts - Part One covers the theoretical aspect of the materials discussed during classes, and Part Two covers the practicality of the concepts. The total marks for Part One is 70, and Part Two is 30.

Assessment criteria:

Marks will be awarded for:

•    Correct,

•    Comprehensive, and

•    Appropriate

application of the materials covered in this subject.

Marks:

Total mark: 100

Weightage: 15% of total subject mark

Assignment Specification:

Part A: (70 marks)

Question 1 (15.0 marks)

a. The INORDER traversal output of a binary tree is H,Y,P,H,E,N,A,T,I,O,N and the POSTORDER traversal output of the same tree is Y,H,E,A,N,H,O,I,T,P,N. Construct the tree and determine the output of the PREORDER traversal output. (5.0 marks)

b.  One main difference between a binary search tree (BST) and an AVL (Adelson-Velski and Landis) tree is that an AVL tree has a balance condition, that is, for every node in the AVL tree, the height of the left and right subtrees differ by at most 1. Starting with an empty BST and AVL tree, insert the following values into the two trees (BST as well as AVL trees), in other words, first insert the values and construct a BST, then using the same set of the values insert and construct an AVL tree.

48, 59, 38, 41, 51, 49, 61, 59, 60

If a key is already existed, insert the new key to the LEFT sub-tree. (5.0 marks)

c.  Based on what you  have done for Question  1b, what is the big-O (worst case) complexity of the total time required to build a binary search tree (BST) consisting of n  nodes? Explain your answer. Answer without explanation gains no mark. (Hint. A tricky question. The question asks for worst case complexity. Think properly.) (5.0 marks)

Question 2 (15.0 marks)

The following two algorithms claim to solve the same problem. To do so, the two algorithms receive as in input argument a reference pointing to a root of a tree:

ALGORITHM 1

Function A1(root) if (root == NULL)

return 1 endIf

x = root. data

Q = new Queue()     ENQUEUE(Q, root)

wℎile (!ISEMPTY(Q)) do t = PEEK(Q)

if (t. data < x) x = t. data

else

ENQUEUE(Q, t. left) ENQUEUE(Q, t. rigℎt) DEQUEUE(Q)

endIf

endwℎile return x

End of function A1

ALGORITHM 2

Function A2 (root) if (root == NULL)

return 1 endIf

t = root

wℎile (t. left ! = NULL) do t = t. left

endwℎile

return t. data

End of function A2

Note: the function ENQUEUE only inserts a new element in the queue if this element is different from NULL.

a) For the following Binary Tree:

What is returned by the function call A2(root)? (5.0 marks)

b) For the Binary Tree in part (a), what is the content of the queue immediately before returning from the execution of function A1(root)? (5.0 marks)

c)  Re-write the function A2, in pseudocode, using recursive function calls. You may not use any form. of iteration. (5.0 marks)

Question 3 (20 marks)

Consider a hash table of size 11 with hash function h(x) = 2x mod 11. Draw the table that results after inserting, in the given order, the following values: 65, 75, 68, 26, 59, 31, 41, 73, 114 for each of the three scenarios below:

a) When collisions are handled by separate chaining; (5 marks)

b) When collisions are handled by linear probing; (5 marks)

c)  When collisions are handled by double hashing using a second hash function ℎ’(x) = (x mod 5) + 1.  Hint, the overall (combined) hash function is H(x) = ( ℎ(x) + i  ×  ℎ′(x) ) mod 11, where i = 0, 1, 2, 3, … (5 marks)

d) When collisions are handled by quadratic probing with a quadratic probe function (x, i) = (ℎ(x) + 0.5 i + 0.5 i2) mod 11 where i  =  1, 2, 3, … . (5 marks)

Question 4 (20.0 marks)

a. The operation convertToMinHeap(ℎ) converts a maximum heap into a minimum heap. Design an algorithm of convertToMinHeap that runs in O(nlgn)  time. Show that your algorithm runs in O(nlgn). (10.0 marks)

b.  Given the following maximum heap, illustrate the process of converting it into a minimum heap using your algorithm described  in (a). You need to show the intermediate processes. (10.0 marks)

Part B: (30.0 marks)

Your task for this assignment is to investigate some of the properties of queues.

You should write a Java, C++, or Python program which simulates the queuing and service of a set of requests at a fast-food restaurant.

Input consists of the following data:

•   The number of primary servers in the system.

•   The number of secondary servers in the system.

•   A set of service requests each consisting of an arrival time and two service times. This set is terminated by a dummy record with arrival time and service times all equal to 0. (Note: the arrival times are sorted in ascending order).

For example, the data file:

3 2

1 2 3

3 3 5

3 2 2

4 3 2

5 2 4

0 0 0

indicates there are 3 primary servers and 2 secondary servers. The first service (customer) arrives in minute 1 (first minute of simulation), and the service requires 2 minutes of primary server’s time and 3 minutes of secondary server’s time. The second service (customer) arrives in minute 3, and it requires 3 minutes of primary server’s time and 5 minutes of secondary server’s time, etc.

The last entry of the data file 0 0 0 indicate the end of simulation. (Note that it is possible to have two customers arrive in the same time as shown in the above sample data (second and third customers).)

Your program should read the name of the data file from standard input and then read the data in the named file into the simulation.  For example, the following command will trigger the execution of your program by reading the data file provided:

./QueueSim datafile.dat      or java QueueSim datafile.dat

The simulation is to be of a system with two sets of servers, primary and secondary, with a single queue associated with each set. Customers arrive in the system and are served first by a primary server and, on completion of this service, by a secondary server. If all servers of a particular type are busy, the customer will enter either the primary or secondary queue as appropriate.

The simulation should be run until the last customer has left the system.

Output, to standard output, for each version of the queuing process will consist of the following data:

•    Number of customers served.

•   Time last service request is completed.

•   Average total service time.

•   Average total time in queue(s). Both overall and separate.

•   Average length of queue. For each queue and overall.

•    Maximum Length of queue. For each queue and overall.

•   Total idle time for each server.

NOTE: Since the question is to assess your understanding of the concept of Queue, you are NOT allowed to use the library of the language that implement queue. You need to write the codes (implementation) of Queue for this exercise. (See point (iii).)

The following is just a sample output for your reference. It is by no mean that your output must be the same because the simulation involves a random function (generator). You can also change the format, as long as the required output (The pointer specified above) are available.

run:

Number of primary servers: 3

Number of secondary servers: 2

----- Output -----

Number of customers served: 100

Time last service request completed: 480 minutes.

Average total service time: 1888/100 = 18.88 minutes.

Average total time in queue:

Primary: 716/100 = 7.16 minutes.

Secondary: 1716/100 = 17.16 minutes. Total (both) = 24.32 minutes.

Average length of queue:

Primary: 2636/480 = 5.49.

Secondary: 2527/480 = 5.26. Total (both) = 10.76 minutes.

Maximum length of queue:

Primary: 22  Secondary: 32

Total (both) = 54

--- Server data ---

P1      P2      P3

330    315    314    Serve Time (in minutes.)

150    164    166    Idle Time (in minutes.)

S1       S2

466     463   Serve Time (in minutes.)

11       15     Idle Time (in minutes.)

End of simulation~

BUILD SUCCESSFUL (total time: 0 seconds)

Other requirements:

•       Software (programming language):

o Java Version - JDK 6 update 17 or above (Using Windows)

o C++ / C compiler - g++ 4.0 or above (Using Linux)

o Python 3.x

•       Operating System:

o Windows XP Professional,

o Windows Vista Home / Business,

o Windows 7,

o Windows 10,

o Ubuntu Linux 8.04 LTS or above.

•       If you use a different environment, please make sure that you MUST check with your lecturers first!

•       For C++ solution, students are to give batch / make files for compilation.

•       Students are to place all compilation and instructions on how to run the program inside a readme.txt file. The markers will refer to this file when marking.

•       Programs should be appropriately documented with comments.

Submissions

This assignment is due by 10:00 pm Singapore time on Monday, 12 August 2024.

•        For  Part A, type your answer for  each question  in a  MS Word or equivalent document  format  and  save  it  in  a  pdf  formatted  file,   name  your  file  as YourUOWStudentNumber-A2-SolPartA.pdf.  You   may  also   hand-written  your answer on pieces of papers and scan them into a pdf format.

•       For Part B, the name of your program should be QueueSim.cpp, QueueSim.java or QuueSim.py, depending on the programming language that you use to develop your program. Execute your program and screen capture your output. Next, zip your source code, libraries, readme.txt together with your screen capture and name your file as YourUOWStudentNumber-A2-SolPartB.zip.

•       Zip            together           YourUOWStudentNumber-A2-SolPartA.pdf            and YourUOWStudentNumber-A2-SolPartB.zip      and      name      your      file       as YourUOWStudentNumber-A2.zip. Do not use your own filename.

•       All assignments that do not satisfy the submission requirements listed above will not be evaluated and will be returned to the students with 0 marks.

Submit the files YourUOWStudentNumber-A2.zip through Moodle in the following way:

1) Access Moodle at http://moodle.uowplatform.edu.au/

2)   To login use a Login link located in the right upper corner the Web page or in the middle of the bottom of the Web page

3)   When successfully logged in, select a site CSCI203 (SP324) Algorithms and Data Structures

4)   Scroll down to a section Submissions of Assignments

5)   Click at Submit your Assignment 2 here link.

6)   Click at a button Add Submission

7)   Move a file, for example, YourUOWStudentNumber-A2.zip into the

submission area. You can drag and drop files here to add them. You can also use a link Add…

8)   Click at a button Save changes,

9)   Click at a button Submit assignment,

10) Click at the checkbox with a text attached: By checking this box, I confirm

that this submission is my own work, … in order to confirm authorship of your submission,

11) Click at a button Continue.

A policy regarding late submissions is included in the subject outline. Only one submission per student is accepted.

Assignment 2 is an individual assignment, and it is expected that all its tasks will be solved  individually without  any cooperation with the  other students. Plagiarism  is treated seriously. Students involved will likely receive zero. If you have any doubts, questions, etc. please consult your lecturer or tutor during lab classes or over e-mail.