代做EE7402 Statistical Signal Processing Part I: Estimation Theory调试Matlab程序

2024-09-19 代做EE7402 Statistical Signal Processing Part I: Estimation Theory调试Matlab程序

EE7402   Statistical Signal Processing

Part I: Estimation Theory

Assignment

Q. 1.  Consider the observations

x[n] = A + w[n]    n = 0, 1, . . . , N - 1

where  A is  an  unknown  constant  and  w[n]  is  a  sequence  of independent,  identi- cally distributed (IID) Gaussian random variables having a zero mean and a known variance σ 2 .

(a) To estimate the unknown parameter θ 1  = A, the following estimator

N-1

 

is proposed. Find a0 , . . . , aN -1  so that the estimator is unbiased and the vari- ance is minimized.  Show all the detailed steps involved.

(b) By using the optimal values of an’s obtained in part (a), find the variance of

θ(ˆ)1 , denoted by  var (θ(ˆ)1 ).  What will happen to  var (θ(ˆ)1 ) as N  ?

(c) To estimate the unknown parameter θ2  = A2 , the following estimator

 

is proposed. Is the estimator θ(ˆ)2  unbiased? Is θ(ˆ)2  asymptotically unbiased?

Q. 2. Let x[n] (n = 0, 1, . . . , N — 1) be a sequence of IID Gaussian random variables having an unknown mean m and an unknown variance σ 2 .

(a) For the 2 × 1 vector parameter θ = [θ1  θ2]T  = [m σ2]T , derive the 2 × 2 Fisher information matrix I(θ) using the following formula

where E(·) is the expectation and ln p(x; θ) is the log-likelihood function. Show all the detailed steps involved.

(b) Re-derive the same Fisher information matrix I(θ) using the following formula

Comment briefly on the computational complexity of the two methods used in

parts (a) and (b) for the derivation of the Fisher information matrix.

(c) Based on the result of part (a) or (b), calculate the Cramer-Rao lower bound

for θ(^).

Q. 3. Consider the observations

x[n] = A + w[n]    n = 0, 1, . . . , N — 1

where A is the unknown parameter to be estimated and w[n] is zero mean noise.

(a) Assume the noise samples are uncorrelated and let the noise variances be given

by σn(2)  = n + 1, for n = 0, 1, . . . , N — 1.  Find the BLUE of A and its variance.

Examine what happens to the variance of the BLUE as N → ∞ .  Repeat for

σn(2) = (n + 1)2  and explain your results.

(b) Assume now that the noise samples are correlated with the covariance matrix

 

where jpj < 1 (p is known), σ 2  is a known constant, and N , the dimension of the matrix, is assumed to be even. Find the BLUE of A and its variance.

Q. 4. Let the observed data x[n] be expressed as

x[n] = As[n] + w[n]   n = 0, 1, . . . , N — 1,

where A is an unknown constant, s[n] is a known signal and w[n] is a sequence of IID Gaussian random variables having zero mean and an unknown variance σ 2 .  Find

the maximum likelihood estimators (MLEs)A(^)MLE ,^(σ)M(2)LE  for A and σ 2 , respectively.

Calculate E(^(σ)M(2)LE ), where E(·) is the expectation.  Is ^(σ)M(2)LE   unbiased?  Is ^(σ)M(2)LE

asymptotically unbiased?

Q. 5. Consider the linear model

= w

where  = [x[0] x[1] x[2]]T  is the 3 × 1 observation vector, θ = [θ1  θ2]T  is the 2 × 1 parameter vector to be estimated, w  is the 3 × 1 noise vector whose elements are white Gaussian variables with zero mean and variance σ 2 , and

 

is the known observation matrix, and E is a small number.

(a) If  = [2 2 2]T , find the minimum unbiased variance (MUV) estimator θ(^) of θ

and describe what happens as E → 0.

(b) If  = [3 2 1]T , find the MUV estimatorθ(^) of θ and describe what happens as

E → 0.

Q. 6. Consider the quadratic estimator

θ(^) = ax2 [0] + bx[0] + c

of a scalar parameter θ based on the single data sample x[0].

(a) Find the coefficients a,b,c that minimize the Baysian MSE.

(b) If x[0] ~ U [   ,  (uniform. distribution) and θ = sin(πx[0]), find the LMMSE and the quadratic MMSE.


Q. 7. The data

x[n] = θ + w[n]    n = 0, 1, . . . , N — 1,

are observed.  The unknown parameter  θ is assumed to have the prior probability density function (PDF)

 

where λ > 0 is a known constant, and w[n] is a sequence of white Gaussian noise with zero mean and known variance σ 2  and is independent of θ .  Find the maximum

a posteriori (MAP) estimator θ(ˆ)MAP  of θ .

Q. 8.  (Open-end question) Do two or more of the following sub-questions:

(a) Describe one of your own research problems as a parameter estimation problem, with a reasonable model and some suggestions for a solution.

(b) Write some programs, say Matlab, to implement some of the parameter esti- mation methods you have learned.

(c) Study the research paper attached in this assignment.  Write a summary of the paper or part of the paper using your own language.