代写ECON2141 Assignment 3代写C/C++程序

2024-09-19 代写ECON2141 Assignment 3代写C/C++程序

Assignment 3.

ECON2141

3 questions, due 5:00pm, Friday, 20 September, 2024.

1. The Vaccination Game:  Social Benefits versus Private Costs.  (35 points) (Loosely based on Brito, D, E. Sheshinski and M.D. Intriligator, ''Externalities and compulsory vaccina- tions,'' Journal of Public Economics 45 (1991), 69-90.)

In the Schelling Location Game discussed in class, we saw that even though the players in that game each strictly preferred to live in a diverse neighborhood rather than a segregrated neigh- borhood, a preference when living in an unequally mixed neighborhood to be in the majority, led to full segregation as the only stable Nash equilibrium. In this case, having the central authority enforce a random allocation of people across the two towns would yield a higher average payo§ than the stable Nash equilibrium that results from the players making their own uncoordinated location decisions.

In this question we consider another example where the Nash equilibrium yields an ine¢ cient outcome because of an externality but the most natural government policy intervention although on the surface appealing may actually make matters worse.

According to conventional wisdom, because of the free rider problem, compulsory vaccination against infectious disease results in a better outcome than the Nash equilibrium in which each person freely chooses whether or not to be vaccinated.

To examine this claim in a stylized setting let us suppose that there are  'many' people uniformly distributed along the unit interval [0; 1]. That is, the proportion of the population in the interval  [a; b], where 0  ≤ a  < b ≤ 1 is b - a, and so in particular, the proportion of the population in the interval [1=3; 3=5] is 3=5 - 1=3 = 4=15. Furthermore, assume the cost of vaccination to an individual at point θ in [0; 1] is θ . [You can think of the vaccination center being at the location 0, and a person located at point θ incurs a 'travel cost' of θ to get their vaccination.]

The payoff to a person located at point θ who gets vaccinated is taken to be

u (Vaccination : θ) = 1 - θ .

An individual who is not vaccinated faces the chance of contracting the infectious disease.  If x is the proportion of the population not vaccinated, then the probability she will be infected is taken to be x. Assuming her payoff is 1 in the event she is not infected and zero in the case

in which she is infected, her expected payoff by choosing not to get vaccinated is given by

u (No Vaccination : x) = (1 - x) × 1 + x × 0 = 1 - x.

Thus x, the unvaccinated proportion of the population, imposes a negative externality.

(a)  (5  points)  Consider the situation in which everyone to the left of location θ(^) has been vaccinated, and everyone to the right of θ(^) has not been vaccinated.  Calcuate the expected payoff to a person at location θ(^) :

i.)  if they choose to get vaccinated;

ii.)  if they choose not to get vaccinated.

(b)  (10 points) Explain why the situation like that described in part (a) with θ(^) = θ*  and for which the expected payo§ to a person at location θ* is the same whether they choose to get vaccinated or not constitutes a Nash equilibrium. Work out what θ* must be.

(c)  (10 points) For the Nash equilibrium you worked out in part (b), derive the expected payo§ of each individual as a function of their location θ in [0; 1].  Graph these equilibrium expected payoffs.  That is, with the horizontal axis going from 0 to 1, and representing the location of the individuals on the unit interval, graph the Nash equilibrium expected payoff of each individual as a function of their location.

(d)  (10  points)  Graph  the expected payoff of each individual in the interval  [0; 1] in the situation in which everyone is compelled by law to get vaccinated.  Compared to the Nash equilibrium payoffs you computed and graphed in part (c), who is made better off and who is made worse off by this government intervention? Which would you recommend and why?

Extra Credit:  (5 points)

(e)  The area under the graph of the expected payoff of each individual as a function of their location θ in [0; 1] is th~e average or per-capita expected payoff.  Derive an expressio~n for this area in terms of θ for the situation in w~hich everyone to the left of location θ has~ been vaccinated, and everyone to the right of θ has not been vaccinated. What value of θ maximizes the per-capita expected payoff?

2.  Comparative  Statics of Mixed  Strategy Equilibria.  (25 points) Abby is tutoring Brian in mathematics. For their next tutorial that is scheduled for Monday, in addition to the lesson planshe has already prepared, she can also set Brian a multiple-choice ''pop-quiz'' to test whether he has done the work required to keep on top of the material covered so far.  Setting the quiz is costly for Abby, so if she were sure Brian would do the work she would prefer to save herself the cost of setting the quiz.  Brian would prefer not to work if he thinks he can get away with it, so if he were sure Abby had not set a quiz for their Monday tutorial he would choose to ''shirk'' rather than ''work''.  But he also knows if he fails the pop-quiz, Abby will tell his parents and he will be punished.  Model this as a simultaneous move game between Abby and Brian with Abbyís strategy set SA  = {quiz, no quiz } and Brianís strategy set SB  = {shirk, work }.

(a)  (5 points) Suppose the payoffs to Abby and Brian satisfy the following inequalites

uA (no quiz, shirk ) < uA (quiz, shirk ) < uA (quiz, work ) < uA (no quiz, work ) uB (no quiz, shirk ) > uB  (no quiz, work ) > uB  (quiz, work ) > uB  (quiz, shirk )

Show there does not exist a Nash equilibrium in pure strategies.

(b)  (10 points) Construct a payoff matrix that satisfies all the inequalities in part  (a) and find all the mixed Nash equilibria. Explain how you know you have found all the equilibria.

(c)  (10  points) Suppose Brian's parents increase the severity of his punishment should he be found to be shirking so reducing his payoff uB  (quiz, shirk ).  Adjust your payoff matrix from part  (b) accordingly and compute the new equilibrium.   Explain whose  behavior. changes and whose behavior. does not.

3.   On Her  Majesty's  Secret  Service.   (40  points) The famous British spy 001 has to choose one of four routes a, b, c, or d (listed in order of speed in good conditions) to ski down a mountain. Fast routes are more likely to be hit by an avalanche. At the sametime, the notorious rival spy 002 has to choose whether to use (''y'') or not to use (''x'') his valuable explosive to cause an avalanche. The payoffs to this game are as follows.

(a)  (15  points)  Let p1 (x)  be  the probability assigned by 001's belief to 002 ís playing x. Explain what 001 should do if p1(x) > 3/2; if p1(x) < 3/2; and if p1(x) = 3/2?

(b)  (5 points)  Suppose you are Mr Queue, the ANU-educated technical advisor to British military intelligence.  Are there any routes you would advise 001 certainly not to take? Explain your answer.

(c)  (20 points) The gripped viewer of this epic drama is trying to figure out what will happen. Find a Nash equilibrium in which one player plays a pure strategy s and the other player plays a mixed strategy μ . Find a different mixed-strategy equilibrium in which that pure strategy s is assigned zero weight? Are there any other equilibria?