代写Quadratic Functions Project: Mathematics and the Arts代做留学生SQL语言程序

2025-01-25 代写Quadratic Functions Project: Mathematics and the Arts代做留学生SQL语言程序

Quadratic Functions Project: Mathematics and the Arts

1.) Find an example of the graph of a quadratic function in a work of art or architecture. Make a copy of the picture of art/architecture.

2.) Draw a coordinate graph system over the picture of the work of art or architecture that you’ve chosen (you may need to enlarge the

quadratic part of the artwork to draw a set of coordinate axes.  If so,

please include a copy of the original work of art or architecture as well).  Mark the scale clearly.  (You may do this with tracing paper, graph paper, or on the computer)

3.) Find the coordinates of five points on your graph and use these five points to find the

equation of your quadratic regression function. Show the work for finding your equation.

4.) Find the coordinates of another point on your graph and check to make sure your model works for that point by substituting into your equation.  Show this work too.

5.) Present your results in a well written report or neat, well organized poster. Your

report/poster should include information about the actual size of your artwork as well as the scale that was used in your copy of the picture. Cite your sources. Other information:

●   This project is to be completed independently. No two students can use the same piece of artwork/architecture.

●   WARNING!!! Some pictures may appear to be parabolas but may not actually be real parabolas. If your artwork is not a true parabola, but is close, please make sure that you state that in your project and presentation. Discuss the amount of error from a true parabola.

Use the following rubric as a “checklist” to help you as you complete your project. Please turn in this rubric on the day you present your project. It will be used to score your project.

Rubric:

Criteria

Points possible

Points earned

A coordinate graph was accurately

drawn and labeled over a copy of the

original piece of parabola artwork. An

accurate scale was included on the

graph, showing the relationship

between the picture size and the actual

size of the artwork/architecture.

 

 

 

2

 

An original copy of the piece of parabola artwork, without the  coordinate plane, was included.

 

2

 

5 points were accurately labeled on the

graph of the parabola.

2

 

A quadratic regression equation was

accurately found and included a clear

explanation of the process used to

obtain the equation.

 

2

 

A 6th point on the graph was found and

tested correctly in the quadratic

regression equation, proving that the

equation works. This equation and

point-testing process proved that the

picture was indeed a true parabola or

was close. If it was not a true parabola,

then the error factor was discussed. All

work was shown.

 

 

 

 

2

 

Results were presented in a well written

report or neat, organized poster.

Poster/report includes at least 3

interesting facts about the piece of

artwork/architecture.

 

 

3

 

All sources were cited.

(i.e. where did you get the picture? Any

other resources used?)

 

2

 

Total

15 points

 

Example Project

The Eiffel Tower in Paris, France Full size image:

 

Source: http://www.visitingdc.com/images/eiffel-tower-paris-france.jpg


Enlarged Image:

 

Source:http://mrhiggins.net/algebra2/wp-content/uploads/2008/04/eiffel-tower.jpg

3 Interesting facts:

●   The Eiffel tower is 986 feet tall and is constructed out of iron material.

●   The Eiffel Tower was built in 1889 and was the tallest structure in the world until 1930.

●   The tower was named after its designer and engineer, Gustave Eiffel, and over 5.5 million people visit the tower every year.

Source: http://www.visitingdc.com/paris/eiffel-tower-picture.asp


Coordinate Plane:

Finding the Quadratic Regression:

I chose 5 points on the graph with the following coordinates: Point A:  (-4, 4)

Point B:  (-3, 5) Point C:   (1, 6)  Point D:  (3, 5)  Point E:   (5, 3)

Iused these 5 points to calculate my quadratic regression equation in my calculator. I found the following approximate equation:

y = -0.1278x2 + 0.0111x + 6.1297

where the R2 value was equal to 0.9990458777. This value is very close to 1,but it

isnt exactly 1. Therefore,this shape is approximately a parabola, but it isnta perfect parabola.

Error:  1- 0.9990458777 = 9.541223 E -4 =  0.0009541223

Using the equation to make a prediction:

I used my quadratic regression equation to predict the height of the parabola when x = 4 on my coordinate plane.

y = -0.1278(4)2 + 0.0111(4) + 6.1297 =  4.1293

This answer has some error due to rounded numbers and the initial error in the regression equation. However,  it is approximately accurate and appears to be true on the picture as well. (See labeled point on the picture)