代做EEC 210 HW 4代做Java程序

2024-12-14 代做EEC 210 HW 4代做Java程序

EEC 210

HW 4

1.       Calculate the  output resistance of the circuit below assuming that IIN = 100 µA and the devices have drawn dimensions of 100 µm/1 µm. Use the process parame- ters given in Table 2.4 at the end of this homework, and assume that Xd = 0 for all devices.  Also, ignore the body effect for simplicity.  Compare your answer with a SPICE simulation and also use SPICE to plot the IOUT - VOUT characteristic for VOUT from 0 to 3 V.

2.       Design the circuit below to satisfy the following constraints:

(a) Transistor M2  must operate in the active region for values of VOUT to within 0.2 V of ground.

(b) The output current must be 50 µA.

(c) The output current must change less than 0.02 percent for a 1 V change in the output voltage.

Ignore the body effect for simplicity.  Make all devices identical except for M4 . Use SPICE to check your design and also to plot the IOUT - VOUT characteristic for VOUT from 0 to 3 V.

3.       Calculate the small-signal voltage gain of the common-source amplifier with active load below.  Assume that VDD = 3 V  and  that  all  the transistors  operate  in the active region.  Do the calculations for values of IREF of 1 mA, 100 µA, 10 µA, and 1 µA.  Assume that the drawn dimensions of each transistor are W = 100 µm and L = 1 µm.  Assume Xd = 0 and use Table 2.4 at the end of this homework for other parameters.

(a) At first, assume the transistors operate in strong inversion in all cases.

(b) Repeat  part  (a)  including the  effects  of weak  inversion.  Use  (1.253) with n = 1. 5 to calculate the transconductance of M1 .  In case you do not have the

book, this equation gives gm = nVT/ID , which means that the transconductance

of an MOS transistor operating in weak inversion is identical to that of a cor- responding bipolar transistor except for the factor 1/n, which models the fact that the gate controls the surface potential indirectly.  Assume that a transistor operates in weak inversion when its overdrive is less than 2n VT , which is about 78 mV at room temperature with n = 1. 5.

(c) Use SPICE to check your calculations for both parts (a) and (b).

VDD

4.       Calculate the small-signal voltage gain of the common-source amplifier with deple- tion load below, including both the body effect and channel-length modulation. Assume that VDD = 3 V and that the dc input voltage is adjusted so that the dc out- put voltage is  1 V.  Assume that M1  has drawn dimensions of W = 100 µm and L = 1 µm.   Also,  assume  that M2    has  drawn  dimensions  of W = 10 µm  and L = 1 µm.  For both transistors, assume that Xd = 0.  For M2 , assume Vt0 = − 1 V. Also, ignore channel-length modulation when calculating the dc bias current, but include channel-length modulation when doing the small-signal analysis.  Use Ta- ble 2.4 at the end of this homework for other parameters of both transistors.

TABLE 2.4 Summary of Process Parameters for a Typical Silicon-Gate n-Well CMOS Process with 0.4   m Minimum Allowed Gate Length

Parameter

Symbol

Value

n-Channel Transistor

Value

p-Channel Transistor

Units

Substrate doping

NA ND

5 1015

4 1016

Atoms/cm3

Gate oxide thickness

tox

80

80

Angstroms

Metal-silicon work function

φ

0 6

0 1

V

Channel mobility

;

450

150

cm2/V-sec

Minimum drawn channel length

drwn

0.4

0.4

m

Source, drain junction depth

Xj

0.15

0.18

m

Source, drain side diffusion

Ld

0.09

0.09

m

Overlap capacitance per unit gate width

Col

0.35

0.35

fF/ m

Threshold adjust implant (box dist)

impurity type

P

P

effective depth

Xi

0.16

0.16

m

effective surface concentration

Nsi

4 1016

3 1016

Atoms/cm3

Nominal threshold voltage

Vt

0.6

0 8

V

Polysilicon gate

dpoly

1020

1020

Atoms/cm3

doping concentration

Poly gate sheet resistance

Rs

5

5

Ω/

Source, drain-bulk

Cj0

0.2

0.4

fF/ 2

junction capacitances (zero bias)

Source, drain-bulk junction

n

0.5

0.4

capacitance grading coefficient

Source, drain periphery capacitance (zero bias)

Cjsw0

1.2

2.4

fF/ m

Source, drain periphery

n

0.4

0.3

capacitance grading coefficient

Source, drain junction built-in potential

ψ

0.7

0.7

V

Surface-state density

QSS q

1011

1011

Atoms/cm2

Channel-length

0.02

0.04

m/V

modulation parameter