代做CSE 414 - Data Management Homework 2 | Basic SQL Queries代写留学生SQL语言

2025-01-24 代做CSE 414 - Data Management Homework 2 | Basic SQL Queries代写留学生SQL语言

Homework 2 | Basic SQL Queries

CSE 414 - Data Management

Objectives: To create and import databases and to practice simple SQL queries using SQLite.

Assignment tools: SQLite 3, the flights dataset hosted here.

What to turn in: create-tables.sql, import-tables.sql, hw2-q1.sql, hw2-q2.sql, etc (see below). You should compose these files in a code editor like Sublime Text (or your favorite IDE).

Where to turn in: Gradescope

Assignment Details

In this homework, you will write several SQL queries on a relational flights database. The data in this database is abridged from the Bureau of Transportation Statistics The database consists of  four tables regarding a subset of flights that took place in 2015. The schema you should use is as follows. Be sure to use exactly these column names in this order.

FLIGHTS (fid int,

month_idint,        -- 1-12

day of month int,    -- 1-31

day of week_idint,  -- 1-7, 1 = Monday, 2 = Tuesday, etc

carrier_id varchar(7),

flight_num int,

origin_city varchar(34),

origin_state varchar(47),

dest_city varchar(34),

dest_state varchar(46),

departure_delay int, -- in mins

taxi_out int,        -- in mins

arrival_delay int,   -- in mins

canceled int,        -- 1 means canceled

actual_time int,     -- in mins

distance int,        -- in miles

capacity int,

price int            -- in $

)

CARRIERS (cid varchar(7), name varchar(83))

MONTHS (mid int, month varchar(9))

WEEKDAYS (did int,day of week varchar(9))

In addition, make sure you impose the following constraints to the tables above:

The primary key of the FLIGHTS table is fid.

●   The primary keys for the other tables are cid, mid, and did respectively. Other than these,do not assume any other attribute(s) is a key/unique across tuples.

●    Flights.carrier_id references Carriers.cid

●    Flights.month_id references Months.mid

●    Flights.day_of_week_id references Weekdays.did

We provide the flights database as a set of plain-textdata files in the linked .zip archive. Each file in this archive contains all the rows for the named table, one row per line.

In this homework, you need to do two things:

1.   import the flights dataset into SQLite

2.   run SQL queries to answer a set of questions about the data.

IMPORTING THE FLIGHTS DATABASE (20 points)

Currently, SQLite does not enforce foreign keys by default. To enable foreign keys use the following as the first command in your create-tables.sql file.

PRAGMA foreign_keys=ON;

To import the flights database into SQLite, you will need to run sqlite3 with a new database file.  For example sqlite3 hw2.db. Then you can run CREATE TABLE statements to create the tables while specifying all key constraints as described above:

CREATE TABLE table_name ( ... );

Then, you can use the SQLite .import command to read data from each text file into itstable after setting the input data to be in CSV (comma separated value) form.

.mode csv

.import filename tablename

See examples of .import statements in the SQLite documentation or sqlite3's help online for details. Depending on where you downloaded and extracted the data files, your import

statement might look something like ".import /Users/maas/Downloads/filename.csv tablename". On most operating systems you can find the file path by right-clicking the file and looking at the  properties.

Put all the code for creating your tables into a file called create-tables.sql and all the code for importing the data into these tables into a separate file called import-tables.sql . If done correctly, you should be able to open up a new db file in sqlite and setup the database using these two commands:

.read create-tables.sql

.read import-tables.sql

WRITING SQL QUERIES (80 points, 10 points each)

For each question below, write a single SQL query to answer that question. Put each of your queries in a separate .sql file, i.e., hw2-q1.sql, hw2-q2.sql, etc.

Important points before starting:

●    Like in HW 1, the code in your .sql files must be valid SQL. If running the file causes errors we will subtract points.

●   Your answer should NOT contain any subqueries. In HW 3 we will use subqueries, but for this homework you shouldn’t use them.

●    Make sure you name the output columns as indicated. Do not change the output column names/return more or fewer columns.

●    If a query uses a GROUP BY clause, make sure that all attributes in your SELECT

clause for that query are either group by attributes or contained in an aggregate function. SQLite will let you select other attributes, but that is wrong as we discussed in lecture. Other database systems would reject the query and we will subtract points for this mistake.

Generally the boolean filters in your queries should correspond to the English

descriptions. For example if a question asks you to find flights on a Tuesday, your query should test day_of_week = ‘Tuesday’ . It is not correct to instead test did = 2, as this isn’t the description in the problem statement. The reasoning is that a database user doesn’t know that Tuesday has did = 2, they need to join Weekdays to Flights to filter on particular weekday strings. This rule also applies for filters over carrier names, months, etc.

●   A tip for solving these problems is to think about FROM clause first. Which tables do you need to join, and what attributes do you need to compute? If you think of the acronym FWGHOS we learned in class, it might help you compose your query.

In the following questions below flights include canceled flights as well, unless otherwise noted. Also, when asked to output times you can report them in minutes.

1.   (10 points) List the distinct flight numbers of all flights from Seattle to Boston by Alaska Airlines Inc. on Mondays. Also notice that, in the database, the city names include the   state, so Seattle appears as ‘Seattle WA’ . Please use the flight_num column instead of fid. Name the output column flight_num.

[Hint: Output relation cardinality: 3 rows]

2.   (10 points) Find all itineraries from Seattle to Boston on July 15th. Search only for

itineraries that have one stop (i.e., flight 1: Seattle -> [somewhere], flight2: [somewhere] - > Boston). Both flights must depart on the same date and must be with the same carrier.

It's fine if the landing date is different from the departing date (in the case of an overnight flight).

The total flight time (actual_time) of the entire itinerary should be fewer than 7 hours (but notice that actual_time is in minutes). For each itinerary, the query should return the name of the carrier,the first flight number, the origin and destination of that first flight, the flight time, the second flight number, the origin and destination of the second flight, the second flight time, and finally the total flight time. Only count flight times here; do not include any layover time.

Name the output columns name (as in the name of the carrier), f1_flight_num,

f1_origin_city, f1_dest_city, f1_actual_time, f2_flight_num, f2_origin_city,

f2_dest_city, f2_actual_time, and actual_time as the total flight time. List the output columns in this order. [Output relation cardinality: 1472 rows]

3.   (10 points) Find the day of the week with the longest average arrival delay. Return the name of the day and the average delay.

Name the output columns day_of_week and delay, in that order. (Hint: consider using LIMIT. Look up what it does!)

[Output relation cardinality: 1 row]

4.   (10 points) Find the names of all airlines that ever flew more than 1000 flights in one day (i.e., a specific day/month, but not any 24-hour period). Return only the names of the airlines. Do not return any duplicates (i.e., airlines with the exact same name).

Name the output column name.

[Output relation cardinality: 12 rows]

5.   (10 points) Find all airlines that had more than 0.5% (= 0.005) of their flights out of

Seattle canceled. Return the name of the airline and the percentage of canceled flights out of Seattle. Percentages should be outputted in percent format (3.5% as 3.5 not 0.035). Order the results by the percentage of canceled flights in ascending order. Name the output columns name and percentage, in that order.

[Output relation cardinality: 6 rows]

6.   (10 points) Find the maximum price of tickets between Seattle and New York, NY (i.e. Seattle to NY or NY to Seattle). Show the maximum price for each airline separately.

Name the output columns carrier and max_price, in that order. [Output relation cardinality: 3 rows]

7.   (10 points) Find the total capacity of all direct flights that fly between Seattle and San Francisco, CA on July 10th (i.e. Seattle to SF or SF to Seattle).

       Name the output column capacity. [Output relation cardinality: 1 row]

8.   (10 points) Compute the total departure delay of each airline across all flights. Some   departure delays may be negative (indicating an early departure); they should reduce  the total, so you don't need to handle them specially. Name the output columns name and delay, in that order. [Output relation cardinality: 22 rows]